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Lecture 4 outline

Basic propagation equation
 Chromatic dispersion
 Loss
 Nonlinearity
 ⇒ Nonlinear Schrödinger equation

Propagation of chirped pulses
 Effect on the spectrum
 Compression

Higher order dispersion
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Fourier transform definition

The textbook uses the following definition:

 Note: one of many different definitions used in different field of science

From this definition, it follows that:

𝑠̃𝑠 𝜔𝜔 = �
−∞

∞

𝑠𝑠 𝑡𝑡 exp 𝑖𝑖𝜔𝜔𝑡𝑡 𝑑𝑑𝑑𝑑 𝑠𝑠 𝑡𝑡 =
1

2𝜋𝜋
�
−∞

∞

𝑠̃𝑠 𝜔𝜔 exp −𝑖𝑖𝜔𝜔𝑡𝑡 𝑑𝑑𝜔𝜔

exp 𝑖𝑖Ω𝑡𝑡 𝑠𝑠 𝑡𝑡 ⟺ 𝑠̃𝑠 𝜔𝜔 + Ω𝜕𝜕
𝜕𝜕𝜕𝜕

⟺ −𝑖𝑖𝜔𝜔
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Propagation equation
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Let’s start from the beginning

A wave traveling in the positive z-direction in a single mode fiber is described by:

Polarization 
unit vector

Spatial 
profile of the 

mode
(transverse)

Slowly varying 
amplitude of the 
pulse envelope

Mode 
propagation 

constant at ω0

𝐄𝐄 𝐫𝐫, 𝑡𝑡 = Re �𝒆𝒆𝐹𝐹 𝑥𝑥,𝑦𝑦 𝐴𝐴 𝑧𝑧, 𝑡𝑡 exp 𝑖𝑖𝛽𝛽0𝑧𝑧 − 𝑖𝑖𝜔𝜔0𝑡𝑡
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Fourier domain

Only 𝐴𝐴 𝑧𝑧, 𝑡𝑡 changes upon propagation.
 An optical signal can always be considered the sum of monochromatic waves, by Fourier 

decomposition. 

 Each frequency component 𝜔𝜔 in the material propagates with a slightly different propagation constant, 
n 𝜔𝜔 .

𝐴𝐴 𝑧𝑧, 𝑡𝑡 =
1

2𝜋𝜋
�
−∞

∞

𝐴̃𝐴 𝑧𝑧,Δ𝜔𝜔 exp −𝑖𝑖Δ𝜔𝜔𝑡𝑡 𝑑𝑑Δ𝜔𝜔 Δ𝜔𝜔 = 𝜔𝜔 − 𝜔𝜔0
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Fourier domain

Let’s consider one frequency component at 𝜔𝜔 :
 This frequency component will propagate inside the  fiber with a propagation constant 𝛽𝛽𝑝𝑝 𝜔𝜔  that is 

different from the propagation constant 𝛽𝛽0 of the central frequency 𝜔𝜔0.

Phase difference accumulated 
after propagation 𝑧𝑧 between 𝜔𝜔 

and 𝜔𝜔0

Fourier transform of 
the initial envelope 

A 0, 𝑡𝑡

𝐴̃𝐴 𝑧𝑧,Δ𝜔𝜔 = 𝐴̃𝐴 0,Δ𝜔𝜔 exp 𝑖𝑖𝛽𝛽𝑝𝑝 𝜔𝜔 𝑧𝑧 − 𝑖𝑖𝛽𝛽0𝑧𝑧

𝐴̃𝐴 𝑧𝑧,Δ𝜔𝜔
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Propagation constant 

Up to now we have seen that the propagation constant 𝛽𝛽𝑝𝑝 𝜔𝜔  depends on the free space 
wavenumber 𝑘𝑘0 and the effective refractive index.

 This is for a purely real propagation constant

In general, 𝛽𝛽𝑝𝑝 𝜔𝜔  is complex: 𝛽𝛽𝑝𝑝 𝜔𝜔 = 𝛽𝛽𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝜔𝜔 + 𝑖𝑖𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖 𝜔𝜔
 The real part influences the phase of the light as it propagates
 The imaginary part influences the amplitude of the light as it propagates

Amplitude evolution
For 𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖 > 0 loss

Phase evolution

exp 𝑖𝑖𝛽𝛽𝑝𝑝𝑧𝑧 ⟹ exp 𝑖𝑖 𝛽𝛽𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑖𝑖𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖 𝑧𝑧

exp 𝑖𝑖𝛽𝛽𝑝𝑝𝑧𝑧 ⟹ exp 𝑖𝑖𝛽𝛽𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑧𝑧 exp −𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖𝑧𝑧
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Effective refractive index

In addition, the real part of the propagation constant depends on the effective refractive index

The index in a material can have some fluctuations around the linear contribution due to 
nonlinearities. We can therefore express it as:

𝛽𝛽𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝜔𝜔 = �𝑛𝑛 𝜔𝜔
𝜔𝜔
𝑐𝑐0

�𝑛𝑛 𝜔𝜔 = �𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 𝜔𝜔 + 𝛿𝛿𝑛𝑛𝑁𝑁𝑁𝑁 𝜔𝜔
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Propagation constant 

Linear part
𝛽𝛽𝐿𝐿 𝜔𝜔 = �𝑛𝑛 𝜔𝜔 𝑘𝑘0  

Fiber lossNonlinear part 
𝛽𝛽𝑁𝑁𝑁𝑁 𝜔𝜔 = 𝛾𝛾 𝜔𝜔 𝐴𝐴 2

𝑛𝑛2 : Kerr index (material property) in m2/W

𝐴𝐴eff : Effective area (Waveguide property)

𝛽𝛽𝑝𝑝 𝜔𝜔 = 𝛽𝛽𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑖𝑖𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖

𝛽𝛽𝑝𝑝 𝜔𝜔 = �𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 𝜔𝜔 + 𝛿𝛿𝑛𝑛𝑁𝑁𝑁𝑁 𝜔𝜔
𝜔𝜔
𝑐𝑐0

+ 𝑖𝑖
𝛼𝛼 𝜔𝜔

2

𝛽𝛽𝑝𝑝 𝜔𝜔 ≈ 𝛽𝛽𝐿𝐿 𝜔𝜔 + 𝛽𝛽𝑁𝑁𝐿𝐿 𝜔𝜔0 + 𝑖𝑖
𝛼𝛼 𝜔𝜔0

2

𝛾𝛾 𝜔𝜔 =
2𝜋𝜋𝑛𝑛2
𝜆𝜆0𝐴𝐴eff
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Linear part of propagation constant, βL(ω)

Can expand 𝛽𝛽𝐿𝐿 𝜔𝜔  in a Taylor series around 𝜔𝜔0

Recall: β0 is related inversely to the phase velocity 𝑣𝑣𝑝𝑝

β1 is related inversely to the group velocity 𝑣𝑣𝑔𝑔 of the pulse

β2 is related to the dispersion parameter

β3 is related to the dispersion slope
 
 

𝛽𝛽𝐿𝐿 𝜔𝜔 ≈ 𝛽𝛽0 + 𝛽𝛽1Δ𝜔𝜔 +
𝛽𝛽2
2
Δ𝜔𝜔2 +

𝛽𝛽3
6
Δ𝜔𝜔3 …

𝛽𝛽𝑚𝑚 =
𝑑𝑑𝑚𝑚𝛽𝛽
𝑑𝑑𝜔𝜔𝑚𝑚

𝜔𝜔=𝜔𝜔0

𝐷𝐷 =
𝑑𝑑
𝑑𝑑𝑑𝑑

1
𝑣𝑣𝑔𝑔

𝑆𝑆 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Basic propagation equation

We are looking for the equation that governs the evolution of 𝐴𝐴 𝑧𝑧, 𝑡𝑡

Take partial derivative with respect to z:

Write in the time domain by using

Linear part

Propagation constant

Phase shift between 𝜔𝜔,𝜔𝜔0

Spectral decomposition𝐴𝐴 𝑧𝑧, 𝑡𝑡 =
1

2𝜋𝜋
�
−∞

∞

𝐴̃𝐴 𝑧𝑧,Δ𝜔𝜔 exp −𝑖𝑖Δ𝜔𝜔𝑡𝑡 𝑑𝑑Δ𝜔𝜔

𝐴̃𝐴 𝑧𝑧,Δ𝜔𝜔 = 𝐴̃𝐴 0,Δ𝜔𝜔 exp 𝑖𝑖𝛽𝛽𝑝𝑝 𝜔𝜔 𝑧𝑧 − 𝑖𝑖𝛽𝛽0𝑧𝑧

𝛽𝛽𝑝𝑝 𝜔𝜔 = 𝛽𝛽𝐿𝐿 𝜔𝜔 + 𝛾𝛾 𝜔𝜔 𝐴𝐴 2 + 𝑖𝑖
𝛼𝛼 𝜔𝜔0

2

𝛽𝛽𝑝𝑝 𝜔𝜔 ≈ 𝛽𝛽0 + 𝛽𝛽1Δ𝜔𝜔 +
𝛽𝛽2
2
Δ𝜔𝜔2 +

𝛽𝛽3
6
Δ𝜔𝜔3 …

Δ𝜔𝜔 ⟺ 𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝐴𝐴
𝜕𝜕𝑧𝑧
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Basic propagation equation

Introduce the new variables 𝑡𝑡′ = 𝑡𝑡 − 𝛽𝛽1𝑧𝑧 (retarded time) and 𝑧𝑧′ = 𝑧𝑧 
 i.e. coordinate system that moves with the pulse group velocity
 Primes are implicit

Nonlinear Schrödinger equation (NLSE)

𝜕𝜕𝐴𝐴
𝜕𝜕𝑧𝑧

+ 𝛽𝛽1
𝜕𝜕𝐴𝐴
𝜕𝜕𝑡𝑡

+ 𝑖𝑖
𝛽𝛽2
2
𝜕𝜕2𝐴𝐴
𝜕𝜕𝑡𝑡2

−
𝛽𝛽3
6
𝜕𝜕3𝐴𝐴
𝜕𝜕𝑡𝑡3

= 𝑖𝑖𝑖𝑖 𝐴𝐴 2𝐴𝐴 −
𝛼𝛼
2
𝐴𝐴

𝜕𝜕𝐴𝐴
𝜕𝜕𝑧𝑧

+ 𝑖𝑖
𝛽𝛽2
2
𝜕𝜕2𝐴𝐴
𝜕𝜕𝑡𝑡2

−
𝛽𝛽3
6
𝜕𝜕3𝐴𝐴
𝜕𝜕𝑡𝑡3

= 𝑖𝑖𝑖𝑖 𝐴𝐴 2𝐴𝐴 −
𝛼𝛼
2
𝐴𝐴
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Propagation of chirped Gaussian pulse
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Propagation of a chirped Gaussian pulse

Initial field is:

A0
2

TFWHM

T0

𝐴𝐴0 : the peak amplitude

𝑇𝑇0 : the half width at the 1/e intensity 
point. It is related to 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶:  governs the frequency chirp imposed 
on the pulse (chirp parameter)

𝐴𝐴 0, 𝑡𝑡 = 𝐴𝐴0 exp −
1 + 𝑖𝑖𝑖𝑖

2
𝑡𝑡
𝑇𝑇0

2

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2 ln 2 𝑇𝑇0 ≈ 1.665𝑇𝑇0
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Recall on Chirp

A pulse is chirped if the carrier frequency changes with time.
Frequency change (or chirp frequency) 𝛿𝛿𝜔𝜔𝑐𝑐 𝑡𝑡  is related to the derivative of the phase:

For our Gaussian pulse we have:

C < 0: down chirp
C > 0: up chirp

𝛿𝛿𝜔𝜔𝑐𝑐 𝑡𝑡 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

𝐴𝐴 0, 𝑡𝑡 = 𝐴𝐴0 exp −
1 + 𝑖𝑖𝑖𝑖

2
𝑡𝑡
𝑇𝑇0

2

= 𝐴𝐴0 exp −
1
2

𝑡𝑡
𝑇𝑇0

2

exp −𝑖𝑖
𝐶𝐶
2

𝑡𝑡
𝑇𝑇0

2

𝛿𝛿𝜔𝜔𝑐𝑐 𝑡𝑡 = −
𝜕𝜕
𝜕𝜕𝑡𝑡 −

𝐶𝐶
2

𝑡𝑡
𝑇𝑇0

2

=
𝐶𝐶
𝑇𝑇02

𝑡𝑡
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Spectrum of chirped Gaussian pulses

Let 𝐴̃𝐴 0,Δ𝜔𝜔  be the Fourier transform of A 0, 𝑡𝑡 .

It can be found using the following expression:

We obtain:

The 1/e spectral half width (intensity) is

The time-bandwidth product (at 1/e point) is

When 𝐶𝐶 = 0, the pulses are chirp free and said to be transform-limited:
Chirping broadens the pulse bandwidth for a given pulse width.

�
−∞

∞
exp −𝑎𝑎𝑥𝑥2 − 2𝑏𝑏𝑏𝑏 =

𝜋𝜋
𝑎𝑎

exp
𝑏𝑏2

𝑎𝑎

𝐴̃𝐴 0,Δ𝜔𝜔 = 𝐴𝐴0
2𝜋𝜋𝑇𝑇02

1 + 𝑖𝑖𝑖𝑖

1/2

exp −
𝜔𝜔2𝑇𝑇02

1 1 + 𝑖𝑖𝑖𝑖

Δ𝜔𝜔0 = �1 + 𝐶𝐶2
𝑇𝑇0

Δ𝜔𝜔0𝑇𝑇0 = 1 + 𝐶𝐶2
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Propagation of chirped Gaussian pulses

To study dispersion, let’s first:
 neglect nonlinearities and losses (𝛾𝛾 = 0,α = 0)
 assume that the wavelength is far from the ZDW (𝛽𝛽3 ≈ 0, 𝛽𝛽2 dominates) 

Use the Fourier transform method, general solution takes the form:

And

𝜕𝜕𝐴𝐴
𝜕𝜕𝑧𝑧 + 𝑖𝑖

𝛽𝛽2
2
𝜕𝜕2𝐴𝐴
𝜕𝜕𝑡𝑡2 = 0

𝐴̃𝐴 𝑧𝑧,Δ𝜔𝜔 = 𝐴̃𝐴 0,Δ𝜔𝜔 exp 𝑖𝑖
𝛽𝛽2
2 Δ𝜔𝜔2𝑧𝑧

𝐴𝐴 𝑧𝑧, 𝑡𝑡 =
1

2𝜋𝜋 �
−∞

∞

𝐴̃𝐴 0,Δ𝜔𝜔 exp 𝑖𝑖
𝛽𝛽2
2 Δ𝜔𝜔2𝑧𝑧 − 𝑖𝑖Δ𝜔𝜔𝑡𝑡 𝑑𝑑Δ𝜔𝜔
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Propagation of chirped Gaussian pulse

Using the derived expression for 𝐴̃𝐴 0,Δ𝜔𝜔  we can use the same identity trick to get 𝐴𝐴 𝑧𝑧, 𝑡𝑡 . We can 
show that:

Gaussian pulse remains Gaussian on propagation
 Its width, chirp and amplitude evolve as the pulse propagates

with𝐴𝐴 𝑧𝑧, 𝑡𝑡 =
𝐴𝐴0
𝑄𝑄 𝑧𝑧

exp −
1 + 𝑖𝑖𝑖𝑖 𝑡𝑡2

2𝑇𝑇02𝑄𝑄 𝑧𝑧 𝑄𝑄 𝑧𝑧 = 1 + 𝐶𝐶 − 𝑖𝑖
𝛽𝛽2𝑧𝑧
𝑇𝑇02
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Changes in pulse width (Gaussian pulse)

Changes in pulse width with z are quantified through broadening factor:
 Pulse width after propagation compared to input pulse width.

We also define the dispersion length 𝐿𝐿𝐷𝐷 as the distance at which an unchirped pulse broadens by 
factor of 2: 

𝑇𝑇 𝑧𝑧
𝑇𝑇0

= 1 +
𝐶𝐶𝛽𝛽2𝑧𝑧
𝑇𝑇02

2

+
𝛽𝛽2𝑧𝑧
𝑇𝑇02

2 1/2

𝐿𝐿𝐷𝐷 =
𝑇𝑇02

𝛽𝛽2
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Changes in pulse width (Gaussian pulse)

 Unchirped pulse: 𝐶𝐶 = 0

 Chirped pulse case 1: 𝐶𝐶𝛽𝛽2 > 0

Pulse broadens

Pulse broadens faster than for C = 0

𝑇𝑇 𝑧𝑧
𝑇𝑇0

= 1 +
𝛽𝛽2𝑧𝑧
𝑇𝑇02

2 1/2

= 1 +
𝑧𝑧
𝐿𝐿𝐷𝐷

2 1/2

> 1 For all z

𝑇𝑇 𝑧𝑧
𝑇𝑇0

= 1 +
𝐶𝐶𝛽𝛽2𝑧𝑧
𝑇𝑇02

2

+
𝛽𝛽2𝑧𝑧
𝑇𝑇02

2 1/2

> 1 For all z
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Changes in pulse width

 Chirped pulse case 2: 𝐶𝐶𝛽𝛽2 < 0

Pulse will initially compress!

Compression

𝑇𝑇 𝑧𝑧
𝑇𝑇0

= 1 +
𝐶𝐶𝛽𝛽2𝑧𝑧
𝑇𝑇02

2

+
𝛽𝛽2𝑧𝑧
𝑇𝑇02

2 1/2

⟹
𝑇𝑇 𝑧𝑧
𝑇𝑇0

= 1 −
𝐶𝐶 𝑧𝑧
𝐿𝐿𝐷𝐷

2

+
𝑧𝑧
𝐿𝐿𝐷𝐷

2 1/2
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Pulse compression

In the case 𝐶𝐶𝛽𝛽2 < 0 the pulse width reaches minimum after a propagation distance given by:

The minimum value is 

Beyond that point, chirped pulse broadens faster than unchirped one. 

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐶𝐶

1 + 𝐶𝐶2
𝐿𝐿𝐷𝐷

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇0

1 + 𝐶𝐶2
=

1
Δ𝜔𝜔0
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Non-Gaussian pulses 

Only Gaussian pulses remain Gaussian upon propagation
In addition, if 𝛽𝛽3 (higher order dispersion) cannot be ignored even Gaussian pulses will not remain 
Gaussian ….

 Observe a tail with oscillatory behavior

After z1, β2 = 0
After z2 > z1, β2 = 0
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Non-Gaussian pulses

In these cases, the FHWM is not a good measure of pulse width
 The RMS (root mean square) pulse width σ can be used instead

 σ can be calculated when the initial pulse is known

For input Gaussian pulse, its initial RMS pulse width 𝜎𝜎0 is related to the 1/e intensity point (𝑇𝑇0) as

with𝜎𝜎 = 𝑡𝑡2 𝑡𝑡𝑚𝑚 =
∫−∞
∞ 𝑡𝑡𝑚𝑚 𝐴𝐴 𝑧𝑧, 𝑡𝑡 2𝑑𝑑𝑑𝑑

∫−∞
∞ 𝐴𝐴 𝑧𝑧, 𝑡𝑡 2𝑑𝑑𝑑𝑑

𝜎𝜎0 =
𝑇𝑇0

2



Lecture 6  slide  26

EE
 –

 4
40

 |
 C

.-S
. B

rè
s

Effect of source spectrum width

Up to now, considered sources with a narrow spectral width 
 i.e. much less than the pulse spectral width

This is not always the case !
 For example, if LEDs are used as light sources
 Will lead to strong dispersive broadening…

For Gaussian source spectrum (RMS spectral width 𝜎𝜎𝜔𝜔) and Gaussian pulses we define 𝜎𝜎𝜔𝜔= 2𝜎𝜎𝜔𝜔𝜎𝜎0
 Source with large spectral width : 𝑉𝑉𝜔𝜔 >> 1
 Source with small spectral width: 𝑉𝑉𝜔𝜔 << 1

𝜎𝜎2 𝑧𝑧
𝜎𝜎02

= 1 +
𝐶𝐶𝛽𝛽2𝑧𝑧
2𝜎𝜎02

2

+ 1 + 𝑉𝑉𝜔𝜔2
𝛽𝛽2𝑧𝑧
2𝜎𝜎02

2

+ 1 + 𝐶𝐶2 + 𝑉𝑉𝜔𝜔2 2 𝛽𝛽3𝑧𝑧
4 2𝜎𝜎03

2
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General rule on limitation on bit rate

In the limit of large broadening and using the common criteria for the bit (baud if non binary) rate, 
the maximum allowed width after propagation is:

4𝜎𝜎 ≤ 𝑇𝑇𝐵𝐵

𝜎𝜎 ≤
1
4𝐵𝐵



Lecture 6  slide  28

EE
 –

 4
40

 |
 C

.-S
. B

rè
s

Example: incoherent source

Let’s consider an LED, unchirped and operating far from the ZDW

Let’s show that the expression for the bandwidth-distance limit in the limit of large broadening is 
given by (𝜎𝜎𝜆𝜆  the RMS spectral width in wavelength)

4𝐵𝐵𝐵𝐵 𝐷𝐷 𝜎𝜎𝜆𝜆 ≤ 1
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Dispersion compensation
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Dispersion recall

The total dispersion 𝐷𝐷 is the sum of the waveguide and material contributions
 Dispersion can be negative, positive and equal to zero at the wavelength typically denoted λZDW.

In standard single mode fiber (SMF)

 Note: pulses are affected differently by nonlinear effects in these two cases

𝐷𝐷 < 0 for λ < 1.31 µm: “normal dispersion”, the group velocity of higher 
frequencies is lower than for lower frequencies

𝐷𝐷 > 0 for λ > 1.31 µm: “anomalous dispersion”, the group velocity of 
higher frequencies is higher than for lower frequencies 
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Total dispersion

D > 0 
Anomalous dispersion 

Higher frequencies (blue components) 
travel faster than lower frequencies 
(red components)

z (at constant time)

D < 0 
Normal dispersion 

Higher frequencies (blue components) 
travel slower than lower frequencies 
(red components)

z (at constant time)
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Dispersion problem and solutions

Using optical amplification, dispersion (not loss) is the major limitation.
 In general, dispersion is important at bit rates > 5 Gbit/s.
 Even if the source is chirp-free and the fiber is single-mode.

Dispersion must be compensated for.
 Then noise and nonlinearities become the major limitations.

Compensation can be in:
 Optical domain: DCF, FBG, filters, OPC, and solitons.
 Electrical domain: Pre- or post-compensation, often using DSP.

Aim of dispersion compensation is to cancel the phase factor:

𝐴𝐴 𝑧𝑧, 𝑡𝑡 =
1

2𝜋𝜋 �
−∞

∞

𝐴𝐴 0,𝜔𝜔 exp
𝑖𝑖
2𝛽𝛽2𝑧𝑧𝜔𝜔

2 +
𝑖𝑖
6𝛽𝛽3𝑧𝑧𝜔𝜔

3 − 𝑖𝑖𝜔𝜔𝜔𝜔 𝑑𝑑𝜔𝜔
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Compensation in the optical domain

In general, an optical device with field transfer function:

   
Will modify the electric field such that:

The dispersion is perfectly canceled if:

 φ0 only changes the absolute phase: is of no consequence
 φ1 introduces a delay: important to keep small to avoid latency

𝐴𝐴 𝑧𝑧, 𝑡𝑡 =
1

2𝜋𝜋
�
−∞

∞

𝐴𝐴 0,𝜔𝜔 𝐻𝐻 𝜔𝜔 exp
𝑖𝑖
2
𝛽𝛽2𝑧𝑧𝜔𝜔2 +

𝑖𝑖
6
𝛽𝛽3𝑧𝑧𝜔𝜔3 − 𝑖𝑖𝜔𝜔𝜔𝜔 𝑑𝑑𝜔𝜔

𝐻𝐻 𝜔𝜔 = 𝐻𝐻 𝜔𝜔 exp 𝑖𝑖𝜙𝜙 𝜔𝜔 = 𝐻𝐻 𝜔𝜔 exp 𝑖𝑖 𝜙𝜙0 + 𝜙𝜙1𝜔𝜔 +
1
2
𝜙𝜙2𝜔𝜔2 +

1
6
𝜙𝜙3𝜔𝜔3

𝜙𝜙2 = −𝛽𝛽2𝐿𝐿 𝜙𝜙3 = −𝛽𝛽3𝐿𝐿 𝐻𝐻 𝜔𝜔 = 1
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Dispersion compensating fiber (DCF)

For most telecom wavelengths (>1.3µm) , SMF has a positive dispersion
 Can be compensated for by inserting a fiber with negative dispersion (i.e. with large negative 𝐷𝐷𝑊𝑊𝑊𝑊)

DCF can be made to have a very strong normal dispersion: 
 D of -100 to -300 ps/(nm.km)
 Loss is relatively high (0.4 to 1  dB/km)
 The core is small, the nonlinear coefficient is relatively large
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Dispersion maps

DCFs can be placed in different ways

Can have three dispersion maps 
 Pre-compensation
 Post-compensation
 Periodic compensation

In practice, periodic compensation is often used

Including nonlinear effects, performance can vary significantly
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Fixed compensation: DCF

Concept: use a span of fiber to compress an initially chirped pulse

λ

Di
sp

er
sio

n 
(p

s/
nm

-k
m

)

SM fiber

+ve dispersion

λ0

17

Initial chirp and broadening by D1

L1

Compress by D2 

L2

DCF

-ve dispersion-80
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Slope compensation

Conditions for perfect dispersion compensation

To satisfy both conditions simultaneously:

The relative dispersion (S/D) slope for DCF and transmission fiber should be equal

𝐷𝐷2𝐿𝐿2 + 𝐷𝐷1𝐿𝐿1 = 0

𝑆𝑆2𝐿𝐿2 + 𝑆𝑆1𝐿𝐿1 = 0

𝑆𝑆2
𝐷𝐷2

=
𝑆𝑆1
𝐷𝐷1
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Dispersion slope compensation

λ

Di
sp

er
sio

n 
(p

s/
nm

-k
m

)

SM fiber
λ2

17

DCF

-102

λ1

16
18

-108
-96

Within spectral window of interest (λ1 – λ2): 

Perfect compensation

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

=
−12

𝜆𝜆2 − 𝜆𝜆1 −102
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆

=
2

𝜆𝜆2 − 𝜆𝜆1 17
𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

=
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆
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Importance of slope matching
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Example

You are given the following 3 fibers:
 SMF-28: dispersion of 17 ps/nm.km and slope of 0.057 ps/(nm2.km) at 1550 nm
 Type A DCF: dispersion of -98 ps/nm.km and slope of -0.1 ps/(nm2.km) at 1550 nm
 Type B DCF: dispersion of -134 ps/nm.km and slope of -0.5 ps/(nm2.km) at 1550 nm

How much length of each type of DCF would you need to compensate the dispersion at 
1550 nm from an 80 km link of SMF-28 ?

Using the length calculated in previous question, which fiber would do a better job at 
compensating multiple WDM channels centered at 1550 nm
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Disadvantages of DCF

Added loss associated with the increased fiber span

Splices loss between fibers of different geometry

Nonlinear effects may degrade the signal over the long length of the fiber if the signal has sufficient 
intensity

Links that use DCF often require an additional amplifier stage to compensate for the added loss 
leading to increase noise

Other schemes have been developed: dispersion equalizing filters
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Conclusions on budget and performance of transmission link

Limitations due to loss
 The power budget needs to be within the required operation of the system 
 Enough optical power at the output of the link for a given performance, given all possible losses 

from the transmitter to the receiver (coupling loss, fiber loss etc ..)

Limitation due to dispersion
 Pulse broadens to a RMS value 𝜎𝜎 from initial 𝜎𝜎0 due to dispersion
 Interference will occur between pulses when 𝜎𝜎 becomes comparable to the time interval between 

bits 𝑇𝑇𝐵𝐵 = 1/𝐵𝐵
 Common criterion in terms of RMS used for maximum acceptable broadening:

𝜎𝜎, the root mean square width

Attenuation and dispersion will each impose a limitation on the maximum 
length 𝐿𝐿 of the link associated with a bit rate 𝐵𝐵

𝜎𝜎 ≤
1
4𝐵𝐵
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