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Lecture 4 outline

Basic propagation equation
= Chromatic dispersion
= Loss
= Nonlinearity
= = Nonlinear Schrodinger equation

Propagation of chirped pulses
= Effect on the spectrum
= Compression

Higher order dispersion
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Fourier transform definition

The textbook uses the following definition:

co

S(w) = J s(t) exp(iwt)dt s(t) = % j S(w) exp(—iwt)dw

— 00
= Note: one of many different definitions used in different field of science

From this definition, it follows that:

e —jw exp(iQt) s(t) & §(w + Q)
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=PrL

Propagation equation
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Let’s start from the beginning

A wave traveling in the positive z-direction in a single mode fiber is described by:

E(r,t) = Re|eF(x, y)A(Z t) exp(l,BOZ — lwyt)]
L

Polarization Spatial Slowly varying Mode
unit vector profile of the amplitude of the propagation

mode pulse envelope constant at w,
(transverse)

y (Hm)

m
m|
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Fourier domain

Only A(z,t) changes upon propagation.

= An optical signal can always be considered the sum of monochromatic waves, by Fourier
decomposition.

1 -
A(z,t) = = j A(z, Aw) exp(—iAwt)dAw Aw = @ — wy

= Each frequency component w in the material propagates with a slightly different propagation constant,

n(w).
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Fourier domain =PrL

Let’s consider one frequency component at w : A(z, Aw)

= This frequency component will propagate inside the fiber with a propagation constant £, (w) that is
different from the propagation constant 5, of the central frequency w,.

A(z, Aw) = A0, Aw) exp|if,(w)z — ifyz]

\ J \ J
4 4
Fourier transform of Phase difference accumulated
the initial envelope after propagation z between w

A(0,t) and w,
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Propagation constant

Up to now we have seen that the propagation constant ﬁp(a)) depends on the free space
wavenumber k, and the effective refractive index.
= This is for a purely real propagation constant

In general, B, (w) is complex: B, (W) = By reqi(@) + iBy im(w)
= The real part influences the phase of the light as it propagates
= The imaginary part influences the amplitude of the light as it propagates

exp[iﬁpz] = exp[i(ﬁp,,ﬂeal + i,Bp,,;m)Z]

exp[iﬁpz] = exp[iﬁp,realz] exp[—ﬁp,imz]

Phase evolution Amplitude evolution
For Bpim > 0 loss
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Effective refractive index

In addition, the real part of the propagation constant depends on the effective refractive index

,Bp,real(w) = ﬁ(w)g)_o

The index in a material can have some fluctuations around the linear contribution due to
nonlinearities. We can therefore express it as:

n(w) = [Mp(w) + 6ny (w)]
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Propagation constant

:Bp (w) = ﬁp,real + iﬁp,im

0
By(@) ~ (@) + (o) +i )
— \ v J

VNN

Linear part Nonlinear part
BL(w) = n(w)ky B (w) = y(w)]A]*

21N,
Ao Aef

Y(w) =

Fiber loss

n, : Kerr index (material property) in m?/W

Acse : Effective area (Waveguide property)
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Linear part of propagation constant, 3, (w)

Recall:

Can expand S, (w) in a Taylor series around w

B (w) = By + f1Aw + %sz + %Aw?’

_(4"F
Bm = (dw_m>w—w

—wo
p,is related inversely to the phase velocity v,
[, is related inversely to the group velocity v, of the pulse
d (1
[3,is related to the dispersion parameter D = ax

Vg
dD
[3;is related to the dispersion slope S = I
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Basic propagation equation cPrL

We are looking for the equation that governs the evolution of A(z, t)

1 -
—>A(z,t) = o f A(z, Aw) exp(—iAwt)dAw Spectral decomposition

—> /I(Z, Aa)) — /I(O, Aa)) exp[i[)’p (a))z — i,BOZ] Phase shift between w, w

a(w
—> :Bp (w) = B (w) + y(w)|A|2 + 1 (2 0) Propagation constant
o 2 Bs 3 Linear part
— fp(w) z,80+,81Aa)+7Aw +€Aw P
. o d0A
Take partial derivative with respect to z: 3,
Z
0

Write in the time domain by using Aw & ia
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Basic propagation equation

A  9A B,0%A B,33A a
B —+ i - = y|APA -2 A
+’816t+l26t2 6 0t3 iy|Al 2

Introduce the new variables t’ = t — 3,z (retarded time) and z’ = z
= j.e. coordinate system that moves with the pulse group velocity

= Primes are implicit

0A B, 024 By 034 .
REE _ — ivlAI24 — = A
0z i o9 5o - YAl 2

Nonlinear Schrodinger equation (NLSE)
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=PrL

Propagation of chirped Gaussian pulse
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Propagation of a chirped Gaussian pulse =PFL

Initial field is:
Ap : the peak amplitude

. 2
1+iC [t _ . _
A(0,t) = Ayexp|— Ty : the half width at the 1/e intensity
2 Ty point. It is related to Try

TFWHM = V21n2 TO = 1665T0

—
T

2
)

©

[od]

C: governs the frequency chirp imposed
on the pulse (chirp parameter)

Intensity (A
o
&)

o
I~

Time (a.u.)
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Recall on Chirp

A pulse is chirped if the carrier frequency changes with time.
Frequency change (or chirp frequency) dw,(t) is related to the derivative of the phase:

Sw.(t) = _0_(/)

ot
14+iC/t\°
2 \T,

1/t)
=A0exp —E T_O

o c/t)
Sw(t) = _ﬁl_§<T_o)

For our Gaussian pulse we have:

A(0,t) = Ayexp

|G

_TOZ

C < 0: down chirp
C > 0: up chirp
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Spectrum of chirped Gaussian pulses

Let A(0, Aw) be the Fourier transform of A(0, t).

: : : ® b*
It can be found using the following expression: j exp(—ax? — 2bx) = \/gexp <;>

2nT¢ )1/2 [ w3T¢
p

We obtain: — 4(0, Aw) = 4, (1 +iC T 1(1 +i0)

The 1/e spectral half width (intensity) is  Aw, = V 1+ CZ/T
0

The time-bandwidth product (at 1/e point) is  Aw,T, = V1 + C?

When C = 0, the pulses are chirp free and said to be transform-limited:
Chirping broadens the pulse bandwidth for a given pulse width.

Lecture 6 slide 17



Propagation of chirped Gaussian pulses

To study dispersion, let’s first:
= neglect nonlinearities and losses (y = 0,a = 0)
= assume that the wavelength is far from the ZDW (f; = 0, 5, dominates)

Use the Fourier transform method, general solution takes the form:

A(z, Aw) = A(0, Aw) exp [i %Aa)zzl

1 ‘ .
And A(z,t) = oy f A(0,Aw) exp (i %szz — iAwt) dAw
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Propagation of chirped Gaussian pulse £PFL

Using the derived expression for A(0, Aw) we can use the same identity trick to get A(z,t). We can
show that:

A (1+iC)t? | B N 2Y
6.0 = oo |- gy | e @ =10

Gaussian pulse remains Gaussian on propagation
Its width, chirp and amplitude evolve as the pulse propagates
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Changes in pulse width (Gaussian pulse)

Changes in pulse width with z are quantified through broadening factor:
= Pulse width after propagation compared to input pulse width.

(%) (%)
TO TO

We also define the dispersion length Lp as the distance at which an unchirped pulse broadens by
factor of V2:

() 2

To

TZ
LD=_0

|-
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Changes in pulse width (Gaussian pulse)

= Unchirped pulse: C =0

1/2 1/2
T(z2) B,z ? 7\
= |1+ —n =|14+[— > 1 Forallz
T, T; Lp
Pulse broadens
= Chirped pulse case 1: C5, > 0
2 2 1/2
T(z CB,z Z
( )= 1+ '83 + 'BLZ > 1] For all z

Pulse broadens faster than for C =0
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Changes in pulse width cPrFL

= Chirped pulse case 2: Cf, < 0

CB,z ? B,z 211/ T(z) IC|z 2 z\°
(1+7F) (&) -0 +6)

Pulse will initially compress!

T(z)

To

4

w
I

Broadening factor (T,/T )
N

B,>0
0 0.5 1 1.5 2

Distance (z/L,)

0 | | |
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Pulse compression

In the case Cf, < 0 the pulse width reaches minimum after a propagation distance given by:

el
Zmin = (1 + CZ) D

The minimum value is

T, 1

Vi+CZ Awg

Tmin —

Beyond that point, chirped pulse broadens faster than unchirped one.
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Non-Gaussian pulses

Only Gaussian pulses remain Gaussian upon propagation

In addition, if B3 (higher order dispersion) cannot be ignored even Gaussian pulses will not remain
Gaussian ....

= QObserve a tail with oscillatory behavior

D.l T T T T T T T T T T T

ooz b Afterz,, £,=0
\ Afterz,>z,, 3,=0

power (W)
-
f]
[my]

=
=
i

0.0z r

-1z -10 -8 -6 -4 -2 0 2 4 & 8 10 1z
time {ps)
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Non-Gaussian pulses cPrL

In these cases, the FHWM is not a good measure of pulse width
= The RMS (root mean square) pulse width o can be used instead

[0 t™A(z, t)|?dt
[Z Az, t)|2dt

o = +/(t?) with (t™m) =

= o can be calculated when the initial pulse is known

For input Gaussian pulse, its initial RMS pulse width oy is related to the 1/e intensity point (T,) as
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Effect of source spectrum width

Up to now, considered sources with a narrow spectral width
= j.e. much less than the pulse spectral width

This is not always the case |
= For example, if LEDs are used as light sources
= Will lead to strong dispersive broadening...

For Gaussian source spectrum (RMS spectral width o,,) and Gaussian pulses we define g,,= 20,0
= Source with large spectral width : I, >> 1
= Source with small spectral width: vV, << 1

2 2 2 2
d (ZZ)=<1+23222) +(1+V(3)<%) +(1+CZ+V(3)2< Psz )

3
0§ 0§ 0§ 420
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General rule on limitation on bit rate cPrL

In the limit of large broadening and using the common criteria for the bit (baud if non binary) rate,
the maximum allowed width after propagation is:

4o < Tg
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Example: incoherent source
Let’s consider an LED, unchirped and operating far from the ZDW

Let’s show that the expression for the bandwidth-distance limit in the limit of large broadening is
given by (o) the RMS spectral width in wavelength)

ABL|D|oy < 1
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=PrL

Dispersion compensation
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Dispersion recall

The total dispersion D is the sum of the waveguide and material contributions

= Dispersion can be negative, positive and equal to zero at the wavelength typically denoted A,
In standard single mode fiber (SMF)

D < 0 for A < 1.31 um: “normal dispersion”, the group velocity of higher
frequencies is lower than for lower frequencies

D >0 for 4 > 1.31 um: “anomalous dispersion”, the group velocity of
higher frequencies is higher than for lower frequencies

= Note: pulses are affected differently by nonlinear effects in these two cases
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Total dispersion

Dispersion D (ps/(nm-km))

30
Higher frequencies (blue components)
travel faster than lower frequencies
20 k= (red components)
10 D>0
2 Anomalous dispersion
z (at constant time)
0 | I ] ] ] |
1.2 1.4 1.5 1.6  A(pm)
Higher frequencies (blue components)
10 travel slower than lower frequencies
(red components)
D<0
20 Normal dispersion  *
3

z (at constant time
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Dispersion problem and solutions

Using optical amplification, dispersion (not loss) is the major limitation.
= |n general, dispersion is important at bit rates > 5 Gbit/s.
= Even if the source is chirp-free and the fiber is single-mode.

Dispersion must be compensated for.
= Then noise and nonlinearities become the major limitations.

Compensation can be in:
= Optical domain: DCF, FBG, filters, OPC, and solitons.
= Electrical domain: Pre- or post-compensation, often using DSP.

Aim of dispersion compensation is to cancel the phase factor:

1 [ [
Az, t) = - f A(0, w) exp [E,Bzzwz + gﬂgzaﬁ — ia)t] dw
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Compensation in the optical domain

In general, an optical device with field transfer function:
. . 1 , 1 3
H(w) = |H()| explig(@)] = [H(@)| exp |i( po + $10 +5gw? + = s
Will modify the electric field such that:

1 ‘ [ [
Az, t) = - j A(0, w)H(w) exp [E,Bzza)z + 5,8320)3 — ia)t] dw

The dispersion is perfectly canceled if:

¢, = —p,L ¢z = —B3L |H(w)| =1

= ¢, only changes the absolute phase: is of no consequence
= @, introduces a delay: important to keep small to avoid latency
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Dispersion compensating fiber (DCF)

For most telecom wavelengths (>1.3um) , SMF has a positive dispersion
= Can be compensated for by inserting a fiber with negative dispersion (i.e. with large negative D, )

DCF can be made to have a very strong normal dispersion:
= D of-100 to -300 ps/(nm.km)
= Loss is relatively high (0.4 to 1 dB/km)
= The core is small, the nonlinear coefficient is relatively large

1500 1525 1550 1575 1600
AA n A I e o o L s e S C—
260 +
§§ -270 +
SE -280+
at
E—;g -290
l J -300

> =310 ]

Wavelength (nm)

Radial distance
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Dispersion maps
DCFs can be placed in different ways

Can have three dispersion maps
"= Pre-compensation
= Post-compensation
= Periodic compensation

In practice, periodic compensation is often used

Including nonlinear effects, performance can vary significantly

Accumulated Dispersion

Accumulated Dispersion

* Accumulated Dispersion

cPrL

Precompensation O O

DCF

Distance along Fiber Link

(a)

Distance along Fiber Link

Postcompensation © O

DCF

0O 0O O

Distance along Fiber Link

\/\/\/\/\/

Periodic Dispersion Map
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Fixed compensation: DCF

Concept: use a span of fiber to compress an initially chirped pulse

N

+ve dispersion

Dispersion (ps/nm-km)

( Initial chirp and broadening by D,

Compress by D, )

L,

L,
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Slope compensation

Conditions for perfect dispersion compensation
D2L2 ~+ D1L1 —_ O

Ssz + S]_Ll —_ O

To satisfy both conditions simultaneously:

S, S
D, D,

The relative dispersion (S/D) slope for DCF and transmission fiber should be equal
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Dispersion slope compensation =PFL

~
Ll

Dispersion (ps/nm-km)

Within spectral window of interest (A; —A,):

Spcr —12 Ssmr 2 Spcr _ SsmF

Dpcr (A2 — 241)(—102) Dsmr B (A2 — A1) (17) I:> Dpcr }

Perfect compensation
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Importance of slope matching =PF

Slope matching

No dispersion-slope matching Full dispersion-slope matching

1,530 nm

1,540 nm

1,545 nm

1,850 nm

1,560 nm

40-Gbit/sec testing over 240-km nonzero dispersion-shifted fiber
Source: AT&T Labs

Figure 2. Full slope match enables a clear optical signal across all wavelengths in the operat-
ing band. (Courtesy of AT&T Labs) .
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Example

You are given the following 3 fibers:
= SMF-28: dispersion of 17 ps/nm.km and slope of 0.057 ps/(nm?.km) at 1550 nm
= Type A DCF: dispersion of -98 ps/nm.km and slope of -0.1 ps/(nm?2.km) at 1550 nm
= Type B DCF: dispersion of -134 ps/nm.km and slope of -0.5 ps/(nm?.km) at 1550 nm

How much length of each type of DCF would you need to compensate the dispersion at
1550 nm from an 80 km link of SMF-28 ?

Using the length calculated in previous question, which fiber would do a better job at
compensating multiple WDM channels centered at 1550 nm
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Disadvantages of DCF cPrFL

Added loss associated with the increased fiber span
Splices loss between fibers of different geometry

Nonlinear effects may degrade the signal over the long length of the fiber if the signal has sufficient
intensity

Links that use DCF often require an additional amplifier stage to compensate for the added loss
leading to increase noise

Other schemes have been developed: dispersion equalizing filters
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Conclusions on budget and performance of transmission link

Attenuation and dispersion will each impose a limitation on the maximum
length L of the link associated with a bit rate B

Limitations due to loss
= The power budget needs to be within the required operation of the system

= Enough optical power at the output of the link for a given performance, given all possible losses
from the transmitter to the receiver (coupling loss, fiber loss etc ..)

Limitation due to dispersion
" Pulse broadens to a RMS value o from initial oy due to dispersion

= |nterference will occur between pulses when o becomes comparable to the time interval between
= Common criterion in terms of RMS used for maximum acceptable broadening:

1

o< — o, the root mean square width

4B
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